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1 Terminology

This section provides an overview of abbreviations and terms used in this document.

Abbreviation Name Explanation
ASIC Application Spe-

cific Integrated
Circuit

An integrated circuited specified for a given ap-
plication.

CA Certification Au-
thority

An entity in a PKI that issues digital certificates.

CAN Controller Area
Network

CAN is a serial bus system used in the automo-
tive and automation domain. The bus data is
transmitted with a differential signal for robust-
ness reasons.

DFT Design for Testing Integrated circuit design techniques that add
testability features to a hardware product design.
.

DRC Design Rule
Check

A geometric constraint imposed on circuit board,
semiconductor device, and integrated circuit de-
signers to ensure their designs function properly,
reliably, and can be produced with acceptable
yield.

ECU Electronic Control
Unit

ECU is the general term for an electronic com-
ponent in the in-vehicle network with certain
functions required by the overall architecture of
the vehicle for the correct usage of the vehicle.

FPGA Field Pro-
grammable
Grid Array

Integrated circuit that can be configured by a
customer via Hardware Description Languages.

GDSII Graphical Data
Stream Informa-
tion Interchange

is a database file format which is the industry
standard for data exchange of integrated circuit
or IC layout artwork.

HDL Hardware Descrip-
tion Language

Specialized Computer language to describe the
structure and behavior of electronic circuits.

HCL Hardware Con-
struction Lan-
guage

An extended Computer language to build soft-
ware that creates hardware structures during
execution using an HDL as output.
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HSM Hardware Secu-
rity Module

Additional component offering security services
to the device or system: In the automotive do-
main an HSM is an additional IP core inside
a chip or microcontroller that offers a security
enclave with cryptographic services to the main
processor of the chip or microcontroller.

ISA Instruction Set
Architecture

An abstract model of a computer also called the
computer architecture.

IP Intellectual prop-
erty

A reusable unit of logic, cell, or integrated circuit
layout design that is the intellectual property of
one party.

LVS Layout versus
Schematic

The class of electronic design automation (EDA)
verification software that determines whether a
particular integrated circuit layout corresponds
to the original schematic or circuit diagram of
the design.

RISC Reduced In-
struction Set
Computer

A computer with a small, optimized instruction
set.

RISC-V Reduced Instruc-
tion Set Computer
V

An open standard Instruction Set Architecture
based on RISC principles.

RTL Register-transfer-
level

A design abstraction which is used in hardware
description languages to create high-level repre-
sentations of a circuit.

SCA Side Channel At-
tack

Any attack based on information gained from
the implementation of a computer system.

TCG Trusted Comput-
ing Group

An industrial standardization body for establish-
ing open standards for the trusting computing
platform.

TPM Trusted Platform
Module

An additional security chip with security features
specified by the TCG to provide security features
to the host system.

Table 1.1: Overview of the terminology used in this report.
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2 Introduction

2.1 Introductory note

This is a draft report by project HEP (Hardening the Value Chain through Open
Source, Trustworthy EDA Tools and Processors). It contains chapters about our
motivation for designing an open, secure HSM, about our use case “automotive sensor
communication”, about the selection of the VexRiscv-design and about our choice of
open hardware development tools. The final chapter contains our verification plan.
The authors thank the Associated Partners for feedback.

2.2 Motivation for Research on Open-Source Hardware

The open-source approach to digital hardware design is relatively new and contrasts
sharply with the way things are done today. Currently, it is good industrial practice
to make all information about the design process of hardware available only under
NDA and to work with patents. This has some well-known disadvantages. Innovations
do not spread as quickly as possible, because common knowledge and new ideas are
not shared. This restriction prevents the development of a culture of collaboration
between developer and user. Ultimately, the knowledge available to the user cannot
be used by the developer because the improvements from the user community do not
flow back. There are further disadvantages for the user. Due to the commitment
to a manufacturer, special extensions cannot simply be made by the user. This is a
problem especially for products with a small number of units, as these are usually
economically uninteresting for the original manufacturer. Similar disadvantages occur
if the products have a very long-life cycle and the original manufacturer has long since
discontinued the products.

The problems are comparable to the recent history of the software industry, which
suffered for a long time from similar problems. In the 1980s, the MIT AI lab switched
to a PDP-10 computer infrastructure that used a propriety operating system from
DEC. According to Richard Stallman, this made small repairs, simple fixes and
improvements impossible and left the AI Lab completely dependent on DEC’s service
team. It quickly became clear that not only a free operating system would be beneficial,
but also appropriate development tools (e.g. compilers, editors) must be available to
drive new developments. A change here was brought by the GNU project (and similar
efforts), which made a multitude of new business models possible because suddenly the
knowledge about UNIX, databases, networking and other fundamental technologies
became accessible to a broad mass of initially young developers, at low costs. But
not only an operating system like Linux or the flavors of BSD-Unix have played an
important role here. Especially the cheap and comfortable development tools were of
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extreme importance. For example, we know today that many services of the Internet
would not even exist without the C compiler gcc and other tools established by the
GNU project. Good examples are the free Apache web server or server operating
systems like Debian, which form the backbone of the Internet.

Through open-source software, entire generations of developers were equipped with
deep skills around the Internet, who had initially pursued the topic only for hobby
reasons (cf. Linus Torvalds and the development of Linux). Only later it turned
out that this development model has large advantages with many applications, since
knowledge and development costs can be shared, in order to be able to tackle large
projects together. At the same time, the universities were able to take up this
development in research and teaching, since the necessary information was, and still
is, freely accessible and thus strengthen the effect by training new young developers.

This results in major advantages, which take place especially for basic technologies
(cf. [TSN17]), where competitors are not in direct competition, but which are essential
for a successful product:

• Development costs are shared between competitors. This applies in particular to
basic technologies that are essential for product development but which cannot
be seen by an end user (e.g., operating system kernels, communication protocols).

• Agreements on de-facto standards are established more easily, since there is no
interest in leveraging them through secret and proprietary developments.

• Over longer periods of time a larger developer community becomes available,
which makes a multiplicity of projects possible and helps to reduce personnel
costs.

• Trade wars and trade restrictions can be avoided, since the development docu-
ments are freely accessible and thus not subject to arbitrary regulations.

These advantages have revolutionized the software industry market and brought us
new business models, mass-market applications such as cloud computing, social media
and numerous Internet-based services. Certainly, all of these technologies could also
have been developed with a closed-source approach. However, certainly at a higher
price and at the expense of a lower development speed.
Almost 40 years after the founding of the GNU project and the start of the Free

Software Foundation, it is becoming apparent that a similar approach can be taken in
the field of building hardware. The first steps were free development tools for dealing
with (commercial) FPGAs and their extension for the design of ASICs. Here, the
role of gcc and the GNU coreutils may be taken over by tools like Yosys (synthesis)
and NextPNR (Place&Route). Almost simultaneously, the open ISA RISC-V was
developed. This led to a large number of different RISC-V implementations (of varying
quality, size and efficiency) becoming available under open-source licenses. These
efforts have the clear potential to enable the development of large hardware projects
soon, much like the GNU tools have helped Linux or BSD-Unix to achieve success.

Major market players have already recognized this new development. For example,
Western Digital is integrating their RISC-V implementation SweRV as a new technology
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into their products and even giving their developments back to the community. Another
example is NVIDIA. They plan to replace their Falcon microprocessor, used as an
embedded control instance for their GPUs, by a RISC-V processor. Interestingly,
one of their goals is to ensure data integrity of sensors for automotive applications
(cf. [SX20]) and they use Spark/ADA for formal verification. Furthermore, there are
reports that Intel wants to take over the RISC-V pioneer SiFive. One of the reasons
seems to be that Intel wants to offer solutions for the automotive market - SiFive
licenses IP for high-end RISC-V applications to Renesas (cf. [Dah21]).
OpenTitan plans to build an open-source silicon root of trust. Hence, the goals

of OpenTitan are similar to those of HEP. However, HEP will go a step further by
using open-source tools for synthesizing RTL descriptions, whenever possible. This
makes it possible to intervene in the process of generating a circuit in order to be able
to implement hardening measures automatically. According to the current state of
knowledge, such an approach would be much more difficult to implement for OpenTitan,
since the project is based on SystemVerilog and no open development tools exist for
this at the current time.
All these current developments show that both the basic ideas of HEP and the

application examples have been carefully selected. In contrast, others perceive RISC-V
as a threat to their business model. For example, ARM warned users about RISC-V
technology in much the same way as SCO-Unix did in the case of Linux (cf. [Hru18]).

In addition to the well-known advantages from the software world, the open devel-
opment approach of hardware will have other benefits as well. Long-term availability
of hardware, especially low-volume products, would also be strengthened, which is a
major benefit for some industries like home automation, critical infrastructure and
healthcare with extremely long-lived products. If such a manufacturer discontinues a
product, the required goods can be produced by others. In addition, it is even possible
to take the development of the otherwise supplied parts into one’s own hands, which
strengthens the flexibility of the production process.
Due to the multitude of advantages of open-source hardware, project HEP would

like to contribute to this emerging trend. This has major advantages in the context of
IT security. For example, certification processes become easier, even mathematically
provably correct code can be produced and its development costs are shared. Hardening
measures against attacks such as side-channel attacks or hardware Trojans can be
more easily developed and errors can be more easily ironed out. The design can be
more easily tested, improved, and further developed. Such measures and techniques
can be implemented in industry or in academic environments or both together. Finally,
user trust increases because they can check open-source hardware designs and, at some
cost, even products.
HEP therefore aims to design a key component of IT-security, namely an open-

source hardware security module (HSM, similar to Trusted Platform Modules, Secure
Enclaves etc.). In doing so, all steps of the hardware design will be done exclusively
with open-source tools, if possible, and the resulting design will be made open. Some
tools will remain proprietary, for the time being, e.g. the development hardware (PCs)
and parts of the hardware production software, e.g. mask generation software. Still, the
attack surface will be reduced. To improve the quality of a critical module such as an
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Figure 2.1: Research Topics in Project HEP

HSM, open-source formal verification techniques will also be developed, extended, and
integrated into an open hardware description language and the related synthesis-tool.
Furthermore, it is planned to check whether formally proven components are still
intact when implemented in silicon.
The automotive industry, one of Germany’s key industries, was selected as the

first application domain to demonstrate the importance and also the feasibility of
open-source hardware in industry. In the planned demonstrator, the communication
of an automotive sensor will be protected (cf. Figure 2.1)

The consortium is firmly convinced that the strengthening of open-source hardware
will help to open up new markets for German companies, from small start-ups to big
players. This will lead to a new generation of hardware developers who will be able
to implement novel ideas. Hence, this project will thus contribute to strengthening
Germany’s and everybody else’s digital sovereignty. Early birds will have more secure
and better certifiable products, less risks of damage to reputation due to vulnerabilities,
and all this even at lower costs.

2.3 Project goal

The project VE-HEP will show the feasibility of using open-source tools in a wide
range of the digital chip design value chain. This includes the use of an open-source
processor design, the use of open-source design tools e.g. for the synthesis or the ”place
and route”, as well as the development of public available automatic implementation
schemes to harden the chip design against hardware attacks. The use case to implement
all this ambitious goals is the design and fabrication of an open-source hardware security
module (HSM) that will be integrated into an automotive application. To improve
the quality and trustworthiness of such a critical module, verification schemes for the
different design steps will be developed, extended and integrated into the design flow.

12 Requirements Analysis
Introduction



2.4 Threats

The increasing complexity of electronic systems for information, communication and
entertainment in cars and other industrial products are leading to a growing attack and
vulnerability surface. This is true for the designed and manufactured product in use
but also for the whole chain of development. In order to secure these implementations
there has been a development of regulations and standards, in particular the ISO/SAE
21434 ”‘Road vehicles - Cybersecurity standards”’ which is a collaborative work by
ISO and SAE working groups [ISO21]. The fulfillment of this international standard
will be required for car manufacturers for type approval in the future. But even with
these guidelines and mandatory technical standards there are challenges in the future.
To secure a minimal response time between detecting an exploit and fixing it,

manufacturers need to work together and establish solutions for tackling the risks that
shared technologies, components or infrastructures can pose. Other problems in the
near future are the increasing calculation power in contrast to the long lifetime of
industrial products (e.g. cars) or plants, especially in regards of quantum computers.
Furthermore the demand for online services and over the air updates is growing

or becoming even mandatory. The prerequisite for such features is to find, fix and
prevent security issues, software bugs or adding new features to mitigate vulnerabilities.
Nevertheless the increasing connectivity also poses a threat vector for criminal intent.
[SVZ19] The growing feature count for infotainment and Car2X solutions with more
and more interfaces (often wireless) could lead to a combination of attacks that
can penetrate vital functionality of vehicles or industrial applications. The possible
incentives for attackers range from stealing property, manipulation or cybercrime
incidents like blackmailing. Another problem for manufacturers are warranty claims
of products which are reset to manufacturer settings after tempering. Therefore
implementations for tampering detection should be developed if a protection is too
expensive or not possible. This is also a viable solution for attacks that aim to destroy
assets slowly and undetected over long timeframes. [Lan13]

Another problem of manufacturers is that successful reverse engineering and hacks
from professionals are often not published. They are kept as a trade secret for offering
services like Tuning or being traded in criminal marketplaces. These attacks, often
performed with sophisticated side channel attacks [OFl20], zero day exploits, time
consuming memory readouts or other attack vectors and the combination of these,
are hard to prevent and often neglected or even accepted in current threat and
risk assessments [Ustr21]. Possible countermeasures are either technical or socially
incentive programs. On the technical side the implementation of fault-injection
detection mechanism is a possibility to counter those attacks. On the other hand
manufacturers can offer bug rewards and hacking competitions as well as using open
source methods which can be tested and improved by a large community.
Supply chain risks are of a different type. For example, natural catastrophes or

political turmoils can happen, suppliers may show oligopolistic behavior, third parties
might attack the assembly of components or their transport. In such cases, open
hardware designs would allow to change suppliers more easily.
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3 Use Case Description and Specification

In this chapter we will give a detailed description of the use cases and possible threats.

3.1 Demonstrator Use Cases

This section gives an overview of the use cases regarding the demonstrator for showcas-
ing the practical usage of the designed hardware security module. A communication
instance consists of an application microcontroller, a connected hardware security
module and can be extended with connected peripheral hardware like sensors or actors
dependent on the specific use case. In addition to the hardware, the demonstrator
also consists of the firm- and software developed by the consortium. The purpose of
the demonstrator is to showcase the functionality of the developed security module
and its features. To accompany the use cases, the requirements for the application
board, interfaces and peripherals have to be specified. Beside the functionality, the
use cases will include test cases and a comparison to similar implementations. The
security threats each use case is facing are described as well as how the demonstrator
is preventing or mitigating the risks.
The demonstrator setup is divided into multiple instances. One of the two main

instances contains a connected sensor for data acquisition, and the other instance is
for receiving the communicated messages and other demonstration purposes. Other
instances will be used to threaten the functionality and integrity of the sender and
receiver instances.
Each instance has an application microcontroller and the connected hardware

security module. The sensor will be interchangeable and can even be simulated
for testing purposes. The sender and receiver entities are connected via industry
standard protocols. An overview of the demonstrator is depicted in Figure 3.1 with
corresponding software modules that have to be developed.

3.1.1 Authenticated Communication Between Instances

This use case regards the communication between the two instances of the demonstrator
over industry standard protocols like CAN or Ethernet. To ensure that Sender and
Receiver are not compromised by a third party, an authentication process has to be
used.

To ensure that all communication is authenticated, unauthenticated messages should
only be used for establishing the authentication process and should be dropped if they
have another purpose. This also eliminates the risk of sending confidential data to
malicious entities.
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Figure 3.1: Demonstrator Overview with connected HSMs and Sensor

The authenticated communication will be further described in derived use cases of
the hardware security module: (3.2.2) Secure Update, as well as (3.2.3) Confidential
Data Access.

Application Microcontroller Requirements

• protocol support for CAN interface

• protocol support for SPI interface for HSM connection

• protocol support for JTAG interface for debugging

• desirable protocol support for Ethernet interface

• desirable protocol support for I²C or UART for further interface testing or sensor
application

3.1.2 Secure Communication Between Instances

This use case describes the secured communication between instances. After authenti-
cation, the messages are encrypted by the sender and will be decrypted by the receiver
via the hardware security module. Therefore, systems for symmetric or asymmetric
encryption have to be implemented and developed.
The secure communication will be further described in derived use cases of the

hardware security module: (3.2.3) Confidential Data Access.

Application Microcontroller Requirements

• sufficient features for debugging and timers

• preferably built in hardware cryptographic functionality (for comparison with
the developed security module performance)

16 Requirements Analysis
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3.1.3 Secure Operation

This use case describes test cases for the general operation of the demonstrator and
its use of the developed hardware security module for securing it against threats. The
functionality of sending and receiving messages, commands and requests as well as
changing the implemented modes of operation will be thoroughly tested. This also
includes a logging concept and the monitoring of security-relevant operations and
events.
Additionally, a concept for manipulation detection will be developed and tested.

The manipulation will be realized with different attack scenarios. An attack instance
will be connected to the communication bus of the two instances and will try to disturb
the operation of both instances, get access to sensitive data, update the devices with
malicious software or lock them in an unproductive state.
The interface between the application board and the hardware security module is

not part of the security concept. In a final product the security module should be
embedded in one integrated circuit and connected to memory and other peripherals
via buses inside the circuit.

The secure operation will utilize all use cases described in the Chapter: Hardware
Security Module Use Cases.

Application Microcontroller Requirements

• adequate memory for implementing operating system and demonstrator software

• sufficient calculation power for operation, logging and debugging purposes

• industry common debugging interfaces and standards

3.1.4 Data Acquisition

To demonstrate the viability of the hardware security module we acquire data with
a sensor which is connected to one application board. Different application sensors
will be chosen to demonstrate a broad range of applications to prove the functionality
and show the impact of different encryption possibilities. Another showcase will be to
demonstrate the functionality of a virtual sensor implementation to easily manipulate
data rates and payload lengths.
The developed tests will measure the timing variances between unencrypted and

encrypted communication, the different encryption standards and their configurations.
Furthermore, we try to compare the developed hardware implementation with pro-
prietary solutions. Threats which are covered by the use case are the possibility of
manipulating the data between sender and receiver as well as replay attacks. Addi-
tionally, the vulnerability of the instances against overflowing the communication bus
and Denial of Service attacks will be featured.

The data aquisition will be further described in the derived use case of the hardware
security module: (3.2.6) Message Authentication.
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Application Microcontroller Requirements

• ADC for possible analog sensor connection

• sufficient calculation power and memory for virtual sensor implementation

• preferably protocol support for I²C, SPI or UART for possible sensor connection

3.2 Hardware Security Module Use Cases

A Hardware Security Module (HSM) serves as a root of trust for electronic components
and their applications in various contexts. The most common and important use
cases are explained in the following sections. These and further use cases are already
discussed in scope of projects like [QuantumRISC].

3.2.1 Secure Boot

Secure boot is a mechanism to ensure the software integrity of a device. Before code
instructions are executed, the secure boot mechanism cryptographically verifies the
integrity and authenticity of the code block in memory. The goal is to gain trust in
the integrity of the executed software, detect its manipulation during the boot phase
of the device, and prevent its execution. Modern devices can contain huge software
stacks and are often booted in multiple stages for performance reasons. The secure
boot workflow has to verify each boot stage before passing control to it.

The trust anchor is a tamper-protected immutable portion of code which is the first
code executed after a reset and has to be trusted. The trust anchor verifies the first
boot stage and after succeeding, passes control to it. Forming a chain of trust, each
boot stage trusts its predecessor, and verifies the integrity of its successor until the
device is booted completely.
There are three secure boot verification schemes: hash-based, MAC-based and

signature-based verification. On devices for which booting is a time-critical process,
cryptographic Message Authentication Codes (MACs) are often the basis for the secure
boot process. In this verification scheme the binary blob containing all executable code
instructions and configuration data is stored on the device along with a cryptographic
MAC over the blob. The MAC is securely generated with a symmetric key which
is only known to the device. During the boot phase of the device, the secure boot
workflow verifies the integrity and authenticity of code and configuration by computing
the MAC over the binary blob in memory and comparing it to the corresponding
MAC stored within secure storage. If the verification fails, the secure boot process
enforces active countermeasures like not booting the application core or limiting the
availability of cryptographic keys.

HSM Requirements

• Hash computation, MAC computation and/or asymmetric signature verification
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• Tamper-protected (secure) storage1

3.2.2 Secure Update

The secure update mechanism enforces that only authenticated software is flashed
to an application core. Asymmetric signatures prevent that an attacker can flash
manipulated software. The signature is deployed along with the software to be
flashed. Therefore, it is signed with a private key in a trusted environment. The
corresponding public key used for the verification must be enrolled beforehand and
stored tamper-protected in secure storage. To flash software, the device usually boots
into a dedicated bootloader. There, it receives the software from a defined source
(e.g., the communication unit or the onboard diagnosis interface) and downloads the
software to the memory of the application core and adjusts the boot flags. The secure
software download mechanism is part of the bootloader and performs a signature
verification before flashing the software. Only if the signature verification succeeds,
the bootloader flashes the software.

Updating software is not always done by the developer of that software. Instead, it
may be distributed to intermediaries who then are tasked to update relevant devices.
This kind of update helps in cases where a central server would have a too high
load, or when the expected environment of the update does not have the required
connectivity (be it connection at all, or download speed). Such an update usually
needs to be encrypted at rest, i.e. until it is installed on a target device, and therefore
it differs from a ”simple” update. The update also needs to be verifiably unmodified
and authenticated. Hence, the client can verify that the update is indeed valid.

HSM Requirements

• Asymmetric signature verification

• Tamper-protected storage

• Symmetric or asymmetric decryption

• Tamper-protected secure storage

3.2.3 Confidential Data Access

Servicing a device containing private information should be done in a way such that
the private data can only be accessed by authorized clients. This confidential data
access mechanism goes two ways, an attacker should not be able to see which data is
accessed nor the data itself once it is relayed back. The data is usually accessed by
way of a remote server, or a local diagnosis tool. The onboard device would need to be
able to verify that whoever is accessing it is authorized to do so. Such an authorization
could stem from a (temporary) certificate signed by an authorized authority. The
onboard device would then check whether the certificate is still valid and initiate a
transfer using it as proof.

1Future products based on the project results may need tamper protection of the entire HSM.
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HSM Requirements

• Asymmetric signature aka certificate verification

• Symmetric or asymmetric encryption

• (Realtime tracking for temporary certificates)

Note: Even though realtime tracking is required to verify temporary certificates, a
tamper-protected RTC will not be implemented as part of this project, as the goal of
this project is not feature completeness.

3.2.4 Secure Access Control

The receiver represents an automotive device that restricts access to certain services
and data such as flashing. Only authorized entities shall be able to unlock these
operations to access the data/services. Typical entities are manufacturers in field
returns or car service stations to enroll (updated) firmware. There are multiple ways
to implement such an authorization check via a challenge response scheme:

• signature-based verification scheme

• MAC-based verification scheme

• public key encryption scheme

• symmetric encryption scheme

The signature-based scheme with a private and public key pair works as follows: A
public-private key pair is generated in a secure environment (e.g., the backend) and the
public key is deployed to the receivers (e.g., during production). If an accessing sender
entity wants to unlock the receiver, it sends an “Unlock Request” to the receiver. The
receiver generates a random seed with enough entropy and a secure bit-length and
then sends it back as “challenge” to the sender. The seed shall ensure the freshness to
protect the unlock against replay attacks. The sender can prove the possession of the
valid private key by signing the challenge seed with the private key that corresponds
to the public key stored in the receiver. The sender sends the generated signature
back as a “response” to the receiver where the signature gets verified. The receiver
verifies the signature with the public key against the original seed. If these match, the
receiver can grant the sender access to the services/data.
The first alternative is to exchange the signature scheme with a MAC verification

scheme in terms of a MAC generation on sender side and MAC verification on receiver
side instead of the respective signature operations. The overall flow of the protocol is
in general identical to the signature-based scheme. In case an encryption operation is
used for the authorization verification in the challenge response protocol, the overall
flow is identical with exception of the specific cryptographic operation changes. Hence,
the challenge generated by the receiver is an encrypted random number. The correct
response from the sender to this challenge is the correctly decrypted random number.
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This random number is then sent back in plain text to the receiver for verification.
Additionally, in this setting, the public key operations are performed on the automotive
device with a public key, while the private key operations are performed on a trusted
tool. In case a symmetric encryption based scheme is used in the challenge response
scheme, the secret keys needs to be pre-shared between sender and receiver.

HSM Requirements

• Cryptographically secure RNG

• Tamper-protected (secure) storage

• Asymmetric signature verification OR MAC computation OR asymmetric en-
cryption OR symmetric encryption

3.2.5 Public Key Infrastructure

Various use cases require asymmetric key pairs/certificates.
Asymmetric keys are used to verify the integrity and authenticity of data. It is

essential that the private key is only known to the instance owning the private key. It
shall not be known to other entities. The corresponding public key of the private and
public key pair is distributed to the communication partners, which shall be able to
verify the senders authenticity. The device which is sending data uses its private key to
generate a signature for the data. It transmits the data along with its signature. The
receiver device uses the corresponding public key to verify the signature of the data.
Since the signature is generated with the private key that is only known to the sender
device, the receiver can verify the authenticity of the sender with this procedure.

Key Pair Generation

Some devices require one or maybe multiple device unique keys. The private key
of the device’s unique private and public key pair is stored securely in the HSM’s
persistent memory and shall not leave the device due to security policies. Therefore,
the private and public key pair is generated by the device’s HSM or stored into its
tamper-protected storage during production. The private key can be kept secretly
inside the HSM. The public key of this pair is provided to the device’s communication
partners. It can be used to verify the device’s authenticity.

Certificate Verification

Some use cases require the private and public key pair to be generated in the Public
Key Infrastructure. In this case, the key pair is certified by a certification authority
(CA) in a backend. Each certificate contains an asymmetric key and is signed using the
CA’s private key. The certificates issued by the CA and the CA’s public key certificate
are deployed to the embedded device where they are stored securely in the HSM.
Before using a certificate, entities must verify whether it is valid or not. To do so,

the device verifies the content of the certificate for validity and whether it is part of
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the certificate chain. Therefore, it verifies the signature of the certificate using the
public key of the CA certificate. The validity of the CA certificate must be verified in
the same manner against the next higher instance of CA certificate or against a root
certificate.

HSM Requirements

• Cryptographically secure RNG

• Tamper-protected secure storage

• Asymmetric signature generation

• Asymmetric signature verification

• Asymmetric key pair generation

• (Realtime tracking for temporary certificates)

3.2.6 Message Authentication

Sensor data is what a system perceives of its surroundings or its state. Thus, it is
crucial to secure the data in any scenario where an attacker can alter it maliciously.
For this, a scheme to generate an authentication token — either a signature or a MAC
over the payload — is applied. The sensor generates the token over its data before
transmitting it to the application core. Also, data freshness must be ensured in some
cases. A sequence number is added to the sensor’s payload data. After verifying the
signature, the application core checks whether the sequence number is reasonably
higher than the last received one to prevent replay attacks.

HSM Requirements

• Tamper-protected (secure) storage

• Asymmetric signature verification OR MAC computation

3.3 Physical Attacks and Hardware-based Threats

3.3.1 Side-Channel Analysis

Since the seminal description of Side-Channel Analysis (SCA) by Paul Kocher [Koc96;
KJJ99], this topic has emerged as a serious threat to modern cryptographic imple-
mentations. Now, after more than two decades of maturation, intensive academic and
industrial research, and continuous progress, secure implementation of cryptographi-
cally strong algorithms is still a challenging and open problem.
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Fundamental Concepts. In its conceptional appearance, Side-Channel Analysis is
a non-invasive concept which uses any information leakage of a physical device to
extract or infer sensitive and secret internal information. Due to the fact that any
physical device can be observed and measured during the execution of cryptographic
algorithms and implementations, adversaries can extract information by any physical
means that are applicable. In particular, extensive research over the years has shown
that physical sources and effects, such as timing behavior [Koc96], instantaneous power
consumption [KJJ99], electromagnetic (EM) radiations and emanations [GMO01],
noise emission [GST17], or temperature and heat dissipation [HS13] can serve as
unintentional side channel and rich source of information leakage.

Information Extraction. In practice, most Side-Channel Attacks rely on a hypothet-
ical model to estimate the behavior and physical characteristics of a cryptographic
device or implementation, e.g., for the timing behavior, instantaneous power con-
sumption, or electromagnetic emanations. Then, using statistical tools and methods,
the hypothetical behavior is compared to the actual and observed behavior in order
to identify the correct assumptions and infer the corresponding secret or sensitive
information. However, the efficiency of this approach is strongly depending on the
soundness and precision of the underlying theoretical model and the corresponding
assumptions. In particular, obtaining and deriving accurate models for real-world
targets and applications is a challenging and non-trivial task. In addition, even if
the model and assumptions are sound and accurate, designers and engineers can
incorporate additional mechanisms and measures to inhibit unintentional leakage and
the extraction of sensitive internals.

Attack Classification. In modern literature, side-channel analysis and attacks are
often classified according to the following taxonomy. However, please note that this
list is provided without any claim to completeness but focuses on most common and
major categories of side-channel attacks. For this, side-channel attacks can be grouped
as follows:

• Timing Analysis

• Time-driven Analysis

• Access-driven Analysis

• Trace-driven Analysis

• Power Analysis (PA)

• Simple Power Analysis (SPA)

• Differential Power Analysis (DPA)

• Electromagnetic Analysis (EMA)

• Simple Electromagnetic Analysis (SEMA)

• Differential Electromagnetic Analysis (DEMA)

Requirements Analysis
Physical Attacks and Hardware-based Threats 23



• Optical and Optical Beam Based Analysis
• Photon Emission Microscopy(PEM)
• Thermal Laser Stimulation (TLS)
• Electro-optical Frequency Mapping (EOFM)
• Laser Logic State Imaging (LLSI)

In the following paragraphs, we will provide more details and insights on the different
attack vectors and outline potential protection and mitigation approaches.

Timing Attacks

Timing analysis is an SCA that is used to extract critical information about the device
under attack by analyzing the execution time of each operation under different setups
and input patterns.

Attack Vectors. An adversary often applies timing analysis on cryptographic systems
to extract the secret key, where timing analysis can help the attacker determine which
subsets of the key are correct, and which subsets are not. Timing attacks are usually
applied along with other side-channel attacks, since more information can be extracted
when different analysis methods are employed. Power analysis is one example that
works well with timing attacks; the power trace does not only show the pattern in
which the operation performed is correlated to, but also how long it took before the
operation is completed. The order of operation is also revealed when applying timing
analysis to power signals; this order can help identify the type of process the device is
running, and may even allow the adversary to reverse engineer the device.

Protection Mechanisms. To protect devices against timing attacks, designers can
do the following: (1) randomize the delay of different operations, or (2) make all
operations take the same time, thus preventing information leakage through timing
channel. While constant-time implementations can guarantee security against timing
attacks, they are not easily achievable in practice when applied at software level.
However, during hardware design, full control over operation and timing behavior can
help to avoid non-constant execution and significantly decrease success rates of such
attacks. Randomization on the other hand, for instance, by adding random delays
to the execution of a task, is easier to accomplish. While it makes the attack more
difficult, it cannot, however, guarantee the security of an implementation against
timing attacks. Randomization is done by creating various execution paths and adding
different delays to different paths. One way to apply delay to a path is to place a
series of buffers in the path during circuit design, where the number of buffers can be
controlled by the designer to maintain the desired delay.

Power Analysis Attacks

The basic idea of power analysis attacks is to reveal secret information from a device
by analyzing its instantaneous power consumption.
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Attack Vector. Power analysis attacks are non-invasive and require physical access
to the device, due to the need to capture current signatures that are produced while
the device is undergoing an operation. SPA is a technique that aims to observe power
measurements obtained while the device under attack is in operation mode. This
type of analysis does not require any advanced or statistical processing stages. Visual
inspection of power traces is considered the primary form of SPA attack, where a power
trace shows a sequence of patterns that can lead to identifying key bits, instructions,
or functions. DPA attacks are the most common type of side-channel attacks, due to
the fact that attackers are not required to have prior knowledge about the hardware
architecture of the device under attack to perform the analysis. Additionally, DPA
has been proven very effective in obtaining high-quality signals in a noisy environment.
Compared to SPA, DPA typically requires larger number of traces, however, additional
data collection makes DPA more powerful. DPA is widely used to reveal secret keys
of cryptographic systems by obtaining power traces while the system is encrypting or
decrypting data blocks.

Protection Mechanisms. In the course of time and research, three main directions of
countermeasures emerged and were applied in practice. While hiding countermeasures
(such as sense-amplified-based logic (SABL) [TV04], wave dynamic differential logic
(WDDL) [TV05]) mainly aim to decrease the Signal-to-Noise (SNR) ratio in order
to embed and hide the information leakage in physical and random noise, masking
countermeasures (such as 3-private logic circuit [ISW03]) tackle the information leakage
through randomization of the sensitive information. In particular, masking is applied
on an algorithmic level, hence independent of the underlying physical architecture
and device characteristics, using techniques from the domain of secret sharing and
multi-party computation. As a third category of protection mechanisms re-keying
countermeasures usually are applied for key-based cryptographic algorithms and
implementations, while frequently updating and exchanging the secret key and in this
manner, limiting the information leakage of the sensitive information according to a
predefined threshold.

Electromagnetic Analysis Attacks

EM SCA focuses on measuring electromagnetic waves that are emitted from ICs in
operation.

Attack Vector. These EM waves are defined as synchronized oscillations of electric
and magnetic fields that propagate at the speed of light through a vacuum. The EM
waves are produced as current flows across a device, where transistor and interconnect
switching activities occur with changing input patterns. An adversary usually aims
to capture EM signals that are produced by current flows of data processing stages,
where most waves occur, due to the switching activity of a device while performing a
data processing operation. These waves are usually considered unintentional, and they
allow critical information to be leaked naturally during operation. When applying EM
side-channel analysis, switching activities can be easily captured and translated into a
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series of events and instances that occur in each clock cycle. This type of attack is
similar to the power side-channel analysis, where a one-dimensional view of current
activity is used to extract critical secret from a device. Power analysis attacks, such as
DPA, however, cannot extract any spatial information, e.g., the location of a specific
current activity. On the other hand, an EM side-channel attack can also identify the
location of an EM signal, which makes it a powerful attack vector. EM signals often
propagate through conduction and radiation; these signals can be intercepted using
sensors, such as a near-field probe or an antenna. Using these sensors allows the EM
signal to be transferred into a current signal, which is post-processed to remove noise,
and limit the frequency band in order to apply the EM analysis.

Protection Mechanisms. To protect against EM SCAs, many countermeasures have
been introduced. Redesigning the circuit to reduce the coupling issue is one of the
primary countermeasures. Additionally, adding a layer of shielding to the device to
prevent EM signals from propagating is another significant measure. Introducing
nonfunctional modules that produce EM noise can also prevent critical information
from being easily intercepted due to the high amount of noise being applied in the same
frequency band. Further, due to the strong relation of power and EM side channels, all
common countermeasures and protection mechanisms against power analysis attacks
(hiding, masking, re-keying) can also prevent leakage of sensitive information through
EM side channels and hence can be considered as appropriate protection mechanisms.

Optical and optical beam based analyses

Optical as well as optical beam based analysis focuses on optical information that can
exit the analyzed chip. For decades, the increasing number of metal layers has made
an optical interaction with the device level of the chip (FEOL) impossible when the
measurement is performed form the chip front side. Therefore, optical and optical
beam based analyses are mainly performed from the chip back side. Here, the FEOL
is covered by the bulk silicon which is transparent for infrared light.

Attack Vector. Photon emission microscopy is a passive optical side channel analysis
that utilizes the phenomenon of photon emission effects in FET devices. When a
standard CMOS circuitry is operated, its transistors are switching from one logical
state to the other. These switching processes are the root cause for the chips power
consumption and for a faint emission of photons. During the switching process the
transistors traverse the saturation condition. This condition causes the transistors to
emit photons. Using a highly sensitive photon emission setup the switching activities
of an actively operated chip can be monitored, this does also include the reading of
memory cells. The integration of several operation runs is a valid method to increase
the measured signal intensity.
Optical beam based attack methods like Thermal laser stimulation (TLS), Electro-
optical Frequency Mapping (EOFM) or Laser Logic State Imaging (LLSI) are based
on an interaction of the chip with an external inserted laser beam. Hence, these
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techniques are not a side channel analysis in the classical definition and a further
description of these techniques is not given here.

Protection Mechanisms. The most generic protection mechanism against optical
and optical beam based analyses is to prevent unwanted optical signals from entering
or leaving the chip. Throughout the last decade several approaches tried to apply
encapsulation schemes. To our knowledge, none of these left the state of prototyping.
Even if the level of protection was adequate, scaling the method into a high volume
production would not be possible or too expansive.
A dedicated protection mechanism against photon emission microscopy side channel
analysis is widely adopted into commercial products. The faint photon emission
intensity that is radiated from a CMOS in operation conditions requires to measure
the system several times to bring the signal to noise ratio into a measurable range.
This attack vector was mitigated by limiting the maximum number of repetitions of
similar operations.

3.3.2 Side-Channel Resistance in Hardware

In this section, additional details and insights on side-channel protection and mitigation
techniques are provided. In particular, as the main scope of this project is protection of
hardware designs and cryptographic accelerators for RISC-V processors, we will focus
the discussion on recent trends and research directions for side-channel protection
mechanisms in hardware.

Mitigating Timing Attacks in Hardware

In general, critical timing behavior that can be exploited by adversaries can occur on
both algorithmic level or within the physical hardware. However, timing differences on
algorithmic level often result from switching and branching on sensitive data and as
such are mostly a problem in software implementations running on a general purpose
Central Processing Unit (CPU). More specifically, in physical hardware, switching or
branching is realized and implemented as multiplexers that inherently have a constant
runtime and usually do not introduce critical timing differences. Given this, any
algorithmic timing differences and branching on sensitive data can be easily resolved in
physical hardware implementations due to the inherent parallelism and static behavior
of digital logic circuits.
In contrast to this, timing differences on circuit and physical hardware level are

more concerning and hence a critical aspect that needs consideration when establishing
side-channel resistance. More precisely, on circuit level, different signal and gate delays
can result in unintentional parasitic effects. However, while these parasitic effects
are well-known and understood and controlled from a functional perspective, the
impact of such effects with respect to side-channel resistance and security is critical
as the signal and gate delays may impact the security of protection mechanisms. In
a worst-case scenario, timing differences on signal and gate level can leak secret and
sensitive information even in the presence of appropriate protection mechanisms, e.g.,
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against PA or EMA (for a more detailed discussion on this topic, see the next sections
below).

Mitigating Power & Electromagnetic Attacks in Hardware

In contrast to protecting software implementations against SCA, hardware implemen-
tations face several challenges arising from physical properties and parasitic effects of
modern digital logic, particularly based on CMOS technology. For this, the following
section extends the discussion of major approaches to mitigate power and electromag-
netic attacks in hardware and lists prominent examples and solutions for each category
as well as major challenges and difficulties to realize appropriate SCA countermeasures
in hardware.

Hiding Techniques. Hiding is generally known as a common class of countermeasures
to protect cryptographic devices against SCA. A subset of hiding countermeasures,
focusing on implementation in hardware, aims at equalizing the power consumption
(i.e., reducing the Signal-to-Noise Ratio for side-channel leakage signals) to render
the consumption independent of the processed data and sensitive information, mainly
thwarting DPA attacks. These countermeasures, commonly known as DPA-resistant
logic styles, usually implement the concepts of Dual-Rail Precharge (DRP) logic.
Prominent examples for such logic styles include (without claim to completeness):

• Dual-Rail Random Switching Logic (DRSL) [CZ06]

• Masked Dual-Rail Precharge Logic (MDPL) [PM05]

• Sense-Amplified-Based Logic (SABL) [TV04]

• Wave Dynamic Differential Logic (WDDL) [TV05]

Modern hiding techniques based on power equalization and custom logic styles usually
have to overcome three major challenges. At first, early propagation [SS06] is related
to unintentional switching of gates due to different delays of input signals arriving at
the gate. In essence, for some logic styles, gates will evaluate at different points in
time, highly depending on the input values and delays, hence leaking input information
through timing differences. The second phenomenon and challenge faced in hardware
devices are glitches [MS06], likely occurring at gate outputs if gate input signals will
change during the evaluation phase of the logic style. For this, any DRP scheme
has to ensure that the evaluation phase is only initiated after all input signals have
become stable, otherwise, sensitive information can be leaked through any transient
but unintentional computation and evaluation. Lastly, imbalanced routing [Tir+05]
is the third major challenge for modern DPA-resistant logic style. More precisely,
routes of different lengths will have different capacitive loads, hence having different
contributions to the amount of power consumed on a signal toggle. As a consequence,
any DPA-resistant logic style must strive to balance all related routes to minimize
corresponding data-dependent leakage.
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Masking Techniques. Among all countermeasures in hardware, masking (based on
concepts of secret sharing) is one of the most promising countermeasures against
SCA due to its formal and sound security foundation. However, as mentioned before,
implementation of masking schemes in hardware is a non-trivial task, mostly due to
parasitic effects [Fau+18] such as combinational recombinations (glitches), memory
recombinations (transitions), and routing recombinations (couplings).
For this, Threshold Implementations (TIs) have been proposed as a first approach

to address the issues and effects of glitches in hardware masking schemes [NRR06]. In
particular, TIs rely on the properties of non-completeness and uniformity for masked
logic circuits to ensure secure computation and combination of masked circuits in
the presence of SCA adversaries. Further, many TIs can be applied already at an
algorithmic level, hence providing a countermeasure that is independent of physical
characteristics and properties of the final target device.
Nearly at the same time of the introduction of TIs, an entirely new branch of

research started to focus on development of formal models for adversaries and physical
execution environments to simplify and assist designers in implementation and formal
verification of masking schemes in hardware. For this, in the context of masking,
formal verification is often conducted in the simple, abstract, and elegant Ishai-Sahai-
Wagner (ISW) 3-probing security model [ISW03] (under some basic assumptions on
noise distributions and independence of inputs), which allows an adversary to probe
(observe) up to 3 intermediate values during the processing of sensitive information.

Given such a formal verification model, many different hardware masking schemes
have been proposed until now, each providing different trade-offs with respect to
circuit area, computational latency, and demand for fresh randomness during circuit
evaluation to maintain security in the presence of a 3-probing adversary. Among all
proposed and introduced candidates, we would like to mention and reference a short
selection (without any claim to completeness):

• Consolidating Masking Schemes (CMS) [Rep+15]

• Domain-Oriented Masking (DOM) [GMK17]

• Unified Masking Approach (UMA) [GM18]

• Generic Low-Latency Masking (GLLM) [GIB18]

• Hardware Private Circuits (HPC) [Cas+20]

However, securely masking arbitrary hardware circuits and designs is a non-trivial task,
and complexity increases with design size. For this, the concept of secure gadgets was
introduced, allowing to create and mask atomic components and functions that can
be re-used and composed to create arbitrarily sized masked circuits. Unfortunately,
creation and composition of 3-probing secure circuits does not necessarily result in a
3-probing secure circuit again, but might even reduce the SCA security during the
composition process. For this, new security notions, allowing to capture and express
the secure composition of gadgets, under some basic assumptions and requirements,
were introduced.
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For this reason, the following additional security notions have been introduced to
extend the verification process and reason about the composability of secure masked
gadgets:

Non-Interference (NI) [Bar+15] allows partial access through probes ensuring indis-
tinguishability from circuit simulation.

Strong Non-Interference (SNI) [Bar+16] corrects deficiencies in NI through limiting
information on output probes.

Probe-Isolating Non-Interference (PINI) [CS20] limits information propagation in
share domains for trivial composition of secure gadgets.

In the presence of such composition strategies and appropriate (secure) gadgets,
complexity of constructing arbitrary masked circuits is reduced through bottom-up
construction. However, as each secure gadget usually comes at overhead in terms
of circuit area, computational latency, and demand in fresh entropy, following such
construction strategies usually ends up in larger and more inefficient circuits than
creating masked circuits in a top-down approach (starting to integrate masking
countermeasures already at the algorithmic level).

Mitigating Optical Attacks in Hardware

In U.S. Pat. No. 7005733, an anti-tamper structure is disclosed. In this structure, a
light source is positioned on the surface of the IC and several sensors on the IC are
used to detect the reflected light. This structure has the drawback that it restricts
the application range of the IC as the IC must be surrounded by a transparent
encapsulant which is enclosed by a reflective outer covering. Furthermore, because of
this capsulation, heat cannot leave the package and the IC gets hot. Another tamper
protection of the IC back side is disclosed in U.S. Pat. No 8198641. In this protection
method, it is suggested to equip the chip back surface with a light-modifying structure
such as lenses, large surface roughness, or reflective particles. The integrity of the back
surface can then be checked by utilizing the IC structures to emit and detect light
inside the IC. A drawback of this tamper-resistant structure is that the light source
is a silicon p-n junction which is not an efficient light source and will degrade very
fast. Another drawback of this method is that it is incapable of protecting the IC
against attacks using optical techniques which are not harmful to the back surface. A
next generation protection mechanism was presented by Amini et al. [Ami+18]. Here,
an opaque protection layer is deposited on the back side of single chips that need to
be protected. This technique provided a sufficient level of protection as well as the
detection of harmful back side modifications. However, the presented method was only
demonstrated on single chips so far. In the framework of this project, we will analyze
if the protection mechanism can be transferred into a wafer level fab environment.

Protection of RISC-V against SCA

We would like to further investigate mitigation techniques against SCA for RISC-
V processors that have been published in order to find the optimal solution as a
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countermeasure. The aim is to protect the device against power or electromagnetic
attacks while keeping the implementation costs as low as possible. Some RISC-V side
channel attack works will be studied thoroughly [DGH19], [AKS21].

3.3.3 Hardware Trojans

Hardware Trojans are malicious modifications or added circuitry to exploit hardware
or to use hardware mechanisms to leak secret information. It is extremely hard to
detect hardware trojans due to the ever-decreasing feature sizes and high complexity
of IP blocks. Moreover, trojans are designed to be activated under special conditions
such as a specific power or temperature, making the detection harder even if high fault
coverage tests are used. In order to assess the possible hardware trojan insertion points
in the design flow, one needs to examine each design step. Each step is explained
below.

• Chip Specification: The design flow starts with the chip specification, in which
an engineer defines features, functionalities, and specifications. Two different
teams, design and verification teams are involved in this step.

• Design entry/Functional verification: Here, logical behavior is confirmed by
simulation. The design team and verification team generate Register-transfer
level (RTL) code using test-benches. This is known as behavioral simulation.
The functional blocks are also known as IPs (Intellectual Properties). RTL level
IPs are called soft IPs and are either developed in-house or by third parties.

• RTL block synthesis: Once the RTL code and test-bench are generated, the RTL
team translates the RTL code into a gate-level netlist using a logical synthesis
tool that meets desired timing constraints. Once again, gate-level IPs (firm IPs)
can be either designed in-house or procured from a vendor. After that, logical
equivalence check (LVC) ensures functional compatibility between RTL code and
the netlist.

• Chip partitioning: The engineers partition the entire design into multiple func-
tional blocks (hierarchical modules). Once all the functional blocks are imple-
mented in the architectural document, the engineers need to brainstorm design
partitioning by reusing IPs from previous projects and providing them from
other parties.

• Design for Test Insertion: When timing constraints are met with the logic
synthesis, the design proceeds to the design for test (DFT) insertion step which
includes scan path or memory BIST (Built-in self-test) insertion. In many cases,
it is mostly outsourced to third-party vendors.

• Floor-planning: Physical implementation (RTL-to-GDSII) process starts with
floor planning, where blocks and pins are placed in the chip. The aim is to
minimize the chip area, make the chip easily routable and improve signal delays.
It is also possible to integrate hard IPs from other vendors and integrate them
into physical design.
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• Placement: Standard cells are placed in a row in this stage. Once again, the aim
is to have an optimum area while meeting the desired timing requirements. The
connection of cells and the net lengths should be taken into account.

• Clock tree synthesis: In this stage, the clock-tree is designed to meet the specified
timing performance.

• Routing: The routing step adds wires needed to properly connect the placed
components while obeying all design rules for the IC.

• Final Verification: The design layout undergoes three different physical verifica-
tion. Layout versus Schematic (LVS) checks if the layout matches the schematic
(netlist). Design rule check (DRC) checks if the layout follows all the geometrical
rules that are given by the manufacturing foundry. Lastly, logical equivalence
checks (LEC) is the process of equivalence check between pre- and post-design
layout. For example, microprocessor designers use equivalence checking to com-
pare the functions specified for the ISA with a RTL implementation, ensuring
that any program executed on both models will result in an identical update of
the main memory content. At every stage, we need to make sure that the logical
functionality is intact and does not break because of any of the automated or
manual changes. This is why LEC is one of the most important checks in the
entire chip design process.

• Graphical Data Stream Information Interchange (GDSII): GDSII file is required
by the manufacturing foundry for the fabrication. It is used to reconstruct or
transfer the layout between different tools and to create the photomasks. GDSII
files are usually the final output product of the IC design cycle and are handed
over to IC foundries for IC fabrication.

Potential Adversaries. The globalization of chip design and fabrication poses a
big threat to the security of integrated circuits. As discussed above in the design
flow, fabrication of a chip from beginning to the end mostly requires the involvement
of different parties. The potential adversaries might be third-party vendors, DFT-
insertion vendors and manufacturing foundries. As stated above, the design house
might need to outsource in order to speed up the production. Soft, firm and hard IPs
might be procured from a third-party vendor, which is a possible insertion point for a
hardware trojan. Since the RTL code of complex designs is extremely long, it is very
hard to detect any added code as a malicious attack. Similarly, it would be extremely
hard to detect any added circuitry in the layout since today’s chip design has billions
of transistors. Alike, DFT vendors have full access to the design and they add their
custom design DFT circuitry, which might have malicious circuitry. Another hardware
trojan insertion phase is during the tape out. The third-party foundry has full access
to the design. This step is the most vulnerable since it is very hard to detect.

Hardware Trojan Design. Hardware trojans are malicious modifications of a chip by
an adversary that can disable the circuit, change its functionality, or create a hidden
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side channel through which a secret can be leaked. They can be implemented by
adding/removing logic gates during the design/fabrication or by changing the physical
parameters of existing logic during manufacturing. A trojan design might include two
main parts, trigger and payload [BT19]. The activation mechanism is referred to as
trigger, and the part of the circuit or the functionality affected by the activation of
the hardware trojan is referred to as payload. Once the trigger is activated, which is
deliberately designed to be very rare, the payload performs malicious behavior. In
case the payload is not activated, the chip behaves like a trojan-free circuit. An ideal
trojan should not be detected during the testing phase. Trojan circuitry might be
combinational or sequential. They can also be classified as digital or analog based
on their signal source. Digital Trojans can either affect the logic values at chosen
internal payload nodes or modify memory locations’ contents. Analog payload Trojans,
on the other hand, affect circuit parameters such as performance, aging power, and
noise margin. The attacks mentioned above are introduced into the system during the
circuit design phase via inserting codes into RTL. Another insertion point in an IC
production is the fabrication phase, where a malicious adversary can change layout
design or mask. An adversary might simply change the process parameters or the
wiring. The hardware trojan insertion points in the value chain are described below.

Hardware Trojan Insertion Points in the Value Chain. As a chip goes through different
phases of manufacturing, it might be subject to malicious attacks. These phases are
described below.

• Specification: As a first step in the design below, the system characteristics
are defined in this phase. The factors to be considered in this phase include
performance, functionality, and physical dimensions. The end results are specifi-
cations for the size, speed, power, and functionality of the system. In this phase,
functional specifications can be altered by a malicious actor.

• Design: Designers might use third-party IP blocks and standard cells and trojans
might be inserted into any of the these components, such as a standard cell
library can be modified by an attacker.

• Fabrication: During this phase, developers create a mask set. A malicious
attacker might make small changes on the mask that might cause serious effects.
Moreover, process parameters or chemical compositions might be altered during
fabrication to cause failures or speed up the aging.

• Testing: An attacker can modify the test pattern in a way that a hardware
trojan inserted during design or fabrication will not be detected while testing.

• Assembly: Assembly is the phase during which a chip and other components are
mounted on a printed circuit board (PCB). A malicious and untrusted assembly
might create security flaws in the system intentionally. For example, a trojan
can be inserted by introducing an I/O pin with high capacitance to affect the
performance. It is also possible to replace a component with a malicious one in
this phase.
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3.3.4 Activity Induced Stress as Hardware Threat

Whether enforced by malicious intent, caused by non-ideal design, fluctuations during
the fabrication or heavy usage, stress poses another threat to the hardware of a
computational system.
In a broader sense, stress describes the physical strain that a system is exposed to at
a given point in time, whose effects either directly or indirectly influence the service
life of the system. This stress is caused by external influences such as temperature,
humidity and vibrations or internal circumstances, for example expansion coefficients
of the metal, voltages or field strengths.

Effects of Stress on Hardware

The effects of stress range from a gradual shift of the electrical parameters of a
transistor (aging) to its thermal breakdown and are a field of continued research. Four
of the main stress-induced defect causes can be summarized as follows [WB08]:

• Electromigration: Electromigration (EM) occurs when metal atoms are accel-
erated and consequently transported inside interconnecting wires. The atoms
are migrated from regions with high current density to regions with low current
density, resulting in increased resistances (thinner conductors) and short circuits
(unwanted bridges).

• Hot Carrier Injection: According to More ([Mor11]), HCI occurs when a charge
carrier is moved along the channel of a MOSFET near the side of the drain.
There, it is accelerated by the electromagnetic field. If the kinetic energy created
by this acceleration is greater than the energy that the crystal lattice contains in
thermal equilibrium, they are called “hot” carriers. With help of this energy, the
charge carrier itself can penetrate the oxide of the gate or (via impact ionization)
shoot other carriers there and thereby alter the electric characteristics of the
MOSFET.

• Time-Dependent Dielectric Breakdown: The exact physics of TDDB are still
not fully understood. Most researchers support the belief that either the applied
voltage itself or the resulting tunneling electrons create defects in the volume of
the oxide film. Once these accumulating defects reach a critical density, a sudden
loss of dielectric properties is triggered, which leads to a surge of current and a
large localized rise in temperature, ultimately resulting in permanent structural
damage within the silicon oxide film.

• Negative Bias Temperature Instability: This electrochemical reaction takes place
in PFETs. Negative bias temperature instability (NBTI) leads to an increase in
the threshold voltage in a transistor, which in turn causes errors due to violation
of temporal conditions.

The ongoing trend of technology scaling only adds to the stress on the material
and the resulting reduction of lifetime. Smaller physical dimensions of the circuits
and conducting materials, strongly increased power density and the resulting rise in
temperature are accelerators for all of these effects.
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Stress Mitigation Techniques

There exists quite a number of approaches to counter the threats of stress and the
resulting effects on hardware, but we will concentrate on the following:

• Lowering the power density: The obvious method to avoid stress is to lower the
power density. Unfortunately, due to numerous reasons, there is a scaling gap
between the physical feature sizes of the transistors and the applied voltages and
clock frequencies ([Sri+04]). Therefore, reducing the power density is hardly
possible for state of the art technology.

• Lowering the temperature: The in-die temperature has a direct influence on all of
the aforementioned defect models. According to Viswanath et al ([Vis+00]) it is
a well-known fact that the reliability of transistors is exponentially dependent on
the operating temperature of the junction. Furthermore, the authors claim that
a small difference in operating temperature of about 10-15°C already results in a
~2X difference in the lifespan of a system. Therefore, reducing the temperature is
very crucial. Jayaseelan has written an excellent thesis on thermal management
([Jay09]) and groups the different methods into passive approaches like improving
heat conductors or spreaders and active measures like activity migration or load
balancing (which will be explained in the next bullet point).

• Balancing and shifting the switching activity: Activity Migration and Load
Balancing are two very similar, but also very effective methods of active thermal
management, which rely on some form of redundancy to work. They both steer
the rate of the switching activity in certain components and thereby directly
influence the production of heat. Activity Migration is the process of shifting the
active processing from one functional unit to another and thereby providing time
for the original one to cool down. Load balancing differs in evenly spreading
the overall load over the available functional units in the first place and thereby
avoiding the generation of so called hot spots. Even though quite similar, each
method has it’s advantages and disadvantages and might not be applicable in
any case.

• Fault tolerance: In contrast to the other methods, fault tolerance is not aimed
at avoiding stress or defects in the first place, but at mitigating the resulting
consequences. This is achieved by using different forms of redundancy on all
levels of abstraction of hard- and software and usually involves the steps of
identifying faulty results or processes and partially also masking their occurrence.
An excellent overview on this topic is given by Koren and Krishna ([KK10]).
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4 Prototype Processor Architecture
Requirements

For the development of an open source processor with an integrated cryptography
hardware accelerator, a suitable Instruction Set Architecture (ISA) has to be selected.
Using the ARM-ISA poses problems in so far as it is fully controlled by the ARM Lim-
ited company and licenses would need to be obtained for development and modification.
This would negatively impact the benefits of an open source implementation as users
would have to obtain a license first. The value proposition of the HSM demonstrator
is heavily influenced by the licensing arrangements necessary for its modification and
use. This means that having a permissive open license for all parts of the project
is critical for its utility. A license-free access for universities will promote uses in
teaching and make research results more easily compared. A permissive license will
also have influence on the supply chain as suppliers can be changed easily, helping to
avoid supply shortages and driving competition. Conversely, supply chains can be
interrupted by licensing problems such as an international trading conflict leading to
sanctions that prohibit further licensing.

A more recent alternative to the ARM-ISA, RISC-V, offers an open source compatible
ISA that does not require licensing and is especially suited for extension by special
purpose hardware. Additionally, there are many open source RISC-V implementations
which could be used as base for the HSM.

4.1 The RISC-V ISA

The RISC-V ISA has a modular design with base instruction sets (for 16, 32, 64,
128 bit integer arithmetic and a load/store machine) and optional extensions. The
following extensions can be used to enhance a given base instruction.

• Multiplication: The M extension introduces instructions for integer multi-
plication and division. The inclusion of this extension represents a time-area
trade-off for the user as a hardware multiplication unit will consume more chip
area but perform the required operation much faster. Many cryptographic
schemes make heavy use of integer multiplication and would benefit from the
use of this extension.

• Compressed Instructions: The C extension introduces short 16 bit in-
structions for common operations, thereby reducing the code size. This can
often reduce the required memory by 25% [AW19]. The significant reduction in
code size is attractive for space intensive firmware, but is only realized in the
instruction memory (for example on-board FLASH memory).
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• Floating-Points: The F, D, and Q extensions introduce IEEE-754 floating-
points with 32(F), 64(D) or 128(Q) bit precision. Floating Point Units can be
expected to consume a lot of chip area and are probably not required for the
implementation of an HSM. If the performance of floating-point operations is
not critical they can also be easily replaced by software implementation already
present in open source compilers.

• Atomic Instructions: The A extension introduces atomic memory instruc-
tions that are useful for thread safety and lock-free programming.

• Bit-Manipulation: The B extension aims to introduce a variety of bit
manipulation instructions that speed up otherwise complex operations like
counting zero bits in a word. This can be useful for implementing symmetric
cryptographic primitives [Mar+21] such as ciphers and hash functions. The
extension has not been adopted by RISC-V ISA at the time of writing. Once
adopted, the ISA will probably include a range of bit manipulation extensions,
with the B extension itself being a selection of different instructions from those
extensions.

The notation for RISC-V processors is the name of the base instruction set followed
by a set of letters that identifies the extensions used. RV32IM, RV32EMC or RV32IMC
appear to be the most suitable bases for the implementation of an HSM. From this,
one can select several specific variants like rv32im (the 32bit base instruction set with
integer operations and integer multiplication). A 32bit instruction set is indicated
if any application uses more than 64kB of memory. Experience shows that 32bit
controllers are almost always used for new designs in the automotive industry. This
will certainly also apply to future developments, which speaks in favor of an ISA that
allows 32bit implementations and simple extension to 64bit. While a 64bit architecture
is possible in general, the required chip area increases significantly. As the larger
address space is not needed, a 32bit architecture is to be preferred.

4.2 HSM Prototype specific Requirements

The HSM demonstrator will have hardware-specific requirements that result primarily
from the HSM-specific use-case requirements described in Section 3.2 and the demands
of the HSM firmware that is used to implement these use-cases. In the following, these
requirements are discussed in their respective context.

• ISA: The HSM Firmware will not have use for IEEE–754 floating point number
arithmetic and it is unlikely that atomic operations will be required. However,
software implementations of public key cryptography make extensive use of
integer multiplication. If no hardware multiplicator is present, as is the case in
the base instruction set, integer multiplication is realized by the compiler using
the available integer manipulation instructions. This has serious implications
for performance of the cryptographic primitive that can be estimated as two
orders of magnitude. Furthermore, integer multiplication is often used with
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secret values and has to run in constant time to avoid timing side-channels. This
holds true for all instructions, and software in general should avoid using variable
time instructions with secret values as much as possible, if at all. Hardware
multiplication structures with the appropriate performance and constant time
behavior use a lot of chip area. It would be possible to use the base instruction
set if a dedicated hardware accelerator for the required schemes is implemented.
Therefore, the HSM requires either RV32IM or RV32I with appropriate hardware
accelerators. Additionally, compressed instructions (provided by the C extension)
could prove very useful if significant savings in memory can be realized.

• Memory: The memory requirements of the HSM firmware are made up of two
distinct quantities. The first is memory that is used to store the program code
of the HSM firmware itself, and the second is the memory the firmware needs for
various computations and to keep the internal state and data at run-time. The
program code for an embedded system is usually stored in non-volatile external
memory and is connected to the processor with an appropriate interface. The
common implementation of this is FLASH memory that is attached using the
SPI bus. Memory for data and state is usually implemented using SRAM inside
the processor. The exact quantities that are required are very hard to determine
in the absence of a complete implementation and are subject to time-memory
trade-offs and optimization during implementation. We estimate that the HSM
will require on the order of 100 kB of data memory and 200 kB of program
memory for a functional implementation. Since the program memory can be
external, the only requirement for it is that an appropriate interface (SPI) is
available. If memory caches are used, they might introduce timing side-channels
into certain cryptographic software implementations. Use of these would have to
be avoided or would require extensive knowledge of the exact caching behavior
to avoid the accidental creation of side-channels during implementation.

• Communication Interfaces: A way for communicating with the HSM
must be implemented for it to have any utility. Part of the TPM 2.0 standard
is a simple memory-mapped communication interface [TIS] that could easily
be adapted for the purposes of the HSM. One of the implementations of this
interface uses SPI to implement read/write for this memory mapping. However,
any low-level communication bus can probably be used to implement this. To
aid the development process a JTAG and an additional UART interface are
probably very useful, but they are not required for the functionality of the
HSM firmware. With these somewhat optional interfaces and including the SPI
bus for external memory mentioned above, the firmware requires a total of 4
communication interfaces. One satisfactory selection would be SPI (master),
SPI (slave), UART, and JTAG, but many combinations are possible. A JTAG
interface can be used to read and write all memory and control the processor
very precisely, thus posing a security risk. Therefore, the implementation must
be able to temporarily disable the JTAG interface to protect the confidentiality of
sensible data in memory. These interfaces should be implemented in hardware to
avoid performance problems that can arise from using interrupt driven software
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implementations.

• Cryptography: Part of the HSM will be hardware structures for the accelera-
tion of cryptography. This may include a true random number generator (RNG),
a hash function primitive like SHA2 [SHA93], a symmetric cipher like AES
[AES], and potentially accelerators for public key cryptography like RSA [RSA]
or elliptic-curve cryptography [ECC]. For communication with this additional
hardware, a method for attaching co-processors is required.

• Trust Anchor and Secure Storage: Implementation of a tamper-protected
secure storage and a trust anchor as specified in Section 3.2 requires that the
HSM incorporates a short program that is always executed before the firmware
itself is executed. This bootloader has the purpose of examining the firmware for
tampering and preventing access to the secure storage if tampering is detected.
For these reasons, a read-only memory (ROM) or internal non-volatile memory
is required as well as a mechanism for adding either to the processor. If no
internal non-volatile storage is available, there is no trivial way to implement a
protection against replay attacks or to implement rate-limiting mechanisms in
the firmware.

4.3 Open Source RISC-V Implementations

There are several RISC-V implementations that are available under an open source
license. The choice of implementation influences and is influenced by the requirements
for development tools listed in Chapter 5. For the construction of the demonstrator
we are primarily interested in the different mechanisms for adding special-purpose
hardware structures to the core in question. A selection of interesting candidate
RISC-V implementations is given in the following:

• Picorv32: The addition of tightly coupled co-processors is possible via a
custom interface that allows non-branching instructions to be implemented on
a co-processor. This interface is used to implement the M extension for this
implementation, but it could just as well be used to interface with special
purpose hardware for the acceleration of cryptographic operations. It would
be theoretically possible to use Verilog-producing HDLs to implement such a
co-processor as long as the result respects this co-processor’s interface. The
Picorv32 uses the ISC open source license that is equivalent to the BSD license;
hence it is very suitable for use in an open source project. The implementation,
however, is optimized for size, with binary shifts taking up to 14 cycles and
multiplication operations taking up to 72 cycles 1. This might prove suboptimal
for software implementations of cryptography and require extreme scrutiny to
avoid the accidental creation of timing side-channels. The Picorv32 can also
implement the C extension for compressed instructions.

1https://github.com/cliffordwolf/picorv32#features-and-typical-applications

40 Requirements Analysis
Prototype Processor Architecture Requirements

https://github.com/cliffordwolf/picorv32#features-and-typical-applications


• VexRiscv: The VexRiscv is is a pipelined RISC-V processor implemented in
SpinalHDL. The very generic Pipeline Component can be extended by plugins
that implement any subset of the RV32I/E[M][A][F][D][C] extensions. In many
cases there are multiple plugins for the same functionality. The SpinalHDL
implementation generates Verilog output and can easily be used with Verilog
based tooling. VexRiscv uses the MIT Open Source License which is very
permissive to use, especially if the goal is to create another open source product.
The modular design makes it easy to extend the 5-stage pipeline with custom
instructions and tightly coupled special purpose hardware. The design also
allows to easily have co-processors that have direct memory access. There exists
support for generating modified Verilog output that includes annotation for
formal verification tools. Simulation is easily accomplished with Verilator and
SpinalHDL derived test-benches, and further testing with FPGAs is entirely
possible with open source tools.

• Rocket Core: Similar to SpinalHDL, Chisel is based on Scala and creates
FIRRTL and Verilog (therefore it is useful for open source synthesis tools).
Also similar to the VexRiscv, the Rocket Core is also a 5 stage pipeline. With
most of the code being licensed under the BSD license the Rocket Core could
easily be used as basis for an open source project. The Rocket Core is a proven
design and has been used to implement the first commercially available RISC-V
microcontrollers. The Rocket Core can implement subsets of RV32IMA.

• PULPissimo: PULPissimo is a pipelined RV32 processor with 4 stages and
an interface for co-processors that have memory access and can implement
subsets of RV32I/[M][F][C]. The peripheral interface includes a direct memory
access (DMA) layer allowing for implementation of peripherals that can directly
access memory without additional delays that would occur if the processor
was to move the working data to and from the co-processor. This allows for
the easy implementation of high performance hardware accelerators for various
cryptographic operations. For example, hash function accelerators could make
use of this. However, SystemVerilog might restrict the choice of open source
synthesis tools or make it impossible.

Rather than selecting a specific implementation and thereby committing to a Hardware
Description Language, the merits of these different implementations shall serve as
decision aid in the selection of the EDA tools in Chapter 5. However, the availability
of an open source RV32I implementation that can be adequately extended is highly
desirable for the implementation of the demonstrator. This holds true for all the
examples above, to some extend.
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5 Requirement Definition and Choice of
Development Tools

For the different development tasks in assembling a processor and firmware that
operates it a set of tools is required. In the scope of this project we will design and
build an HSM to demonstrate the ultility of those tools. The central component of the
HSM will be a processor running a firmware that implements a subset of the TPM2.0
specification. The required hardware synthesis needs to support the development
flow for ASIC and FPGA to allow for proper testing and evaluation before the actual
fabrication. Furthermore, the simulation of circuits needs to be supported for the
development of large circuits. A hardware description language (HDL) has to be
selected that supports these features as well as formal verification. Alternatively, the
HDL has to be extended to support the required features. The software components
of the demonstrator will probably be written in C or Rust and will require a compiler
that supports the RISC-V target. With the aim of developing an open source processor
with an open source firmware, open source tools should be preferred here. This would
also ease the modification of these tools to satisfy requirements that could not be met
previously. With this in mind we arrive at the following functional and non-functional
requirements:

Functional Requirements Non-functional Requirements
Synthesis Open Source
Placer Interoperability
Router High Level of Abstraction

Timing Analysis Simulation
ASIC flow Formal Verification
FPGA flow
C Compiler Debugger

RISC-V support

5.1 Development Tools

The development of hardware requires the decision on several different tools such as a
suitable Hardware Description Language (HDL), a simulator, a synthesis tool and a
place&route tool. Multiple factors play a role in finding the most suited tools, such as
the available functionalities, but also whether the tool is open-source or proprietary,
with an open-source tool being the preferable solution. Figure 5.1 gives an overview
on existing open-source tools in the hardware development tool flow.
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Figure 5.1: Open Source Hardware Development Tools

5.1.1 Languages

Apart from the well-known HDLs VHDL and Verilog, newer language are often
domain-specific languages embedded into higher-level languages such as Scala or
Python. These languages, sometimes referred to as Hardware Construction Languages,
still allow the developer to take full control over the created hardware while introducing
features from functional and object-oriented programming. The approach of High-Level
Synthesis (HLS) takes the programming to an even higher abstraction level, allowing
the developer to write software code and then have it translated into HDL code by a
tool. The selection of an appropriate HDL has applications for the Selection Criteria
discussed in Chapter 4, in so far as the selection of an HDL will restrict the available
open source processors that can be used as basis for a demonstrator. Conversely the
availability of an open source RISC-V processor is a strong argument for the use of a
given HDL.

Hardware Description Languages

• Verilog and VHDL are the most commonly used HDLs. As a consequence, most
simulation and synthesis tools work with these two languages. The developer
has full control over the resulting hardware, but the low abstraction level of the
languages results in long codes that are harder to read and maintain, and it
makes it difficult to create generic designs.

• SystemVerilog is a superset of Verilog with enhancements to address the system-
level design and verification. It features multiple improvements over plain Verilog,
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however, it would make the use of open-source synthesis tools difficult.

Hardware Construction Languages

• SpinalHDL is based on the functional object-oriented programming language
Scala, resulting in a higher abstraction level. This allows for the creation of
more generic designs while also requiring less written code. From the SpinalHDL
code, equivalent VHDL or Verilog code can be automatically generated. The
SpinalHDL community is very active with frequent updates to the language. As
we are in contact with the main developer of SpinalHDL, the extension of the
language and the addition of new features needed by us should be a lot easier
than for other HDLs. Powerful libraries allow to extend the functionality of
Spinal.

• Chisel is the precursor of SpinalHDL, with a less active developer community.
Just like Spinal, Chisel is based on Scala and shares many of the positive aspects
of Spinal. The first commercially available RISC-V processors, developed and
sold by SiFive1, were created using Chisel.

• Clash is based on the functional programming language Haskell, but extends it
with dependent types to allow the strongly typed construction of hardware. The
Clash compiler transforms these high-level descriptions to low-level synthesizable
VHDL or Verilog. It emphasizes synchronous circuits.

• MyHDL is based on Python. Similarly to the Scala-based HDLs, it has a high
abstraction level and generates Verilog and VHDL code. Its functionalities can
be extended by powerful libraries, however, the project seems to be no longer
active with the latest release being from 2018.

• nMigen is another Python-based language that shares the positive aspects from
MyHDL. It seems to be more active with the latest commit to the Git being
from May 2021. However, the language is still incomplete as the standard library
and build system will undergo changes before the design is finalized.

• SystemC is a class of C++ libraries interfacing an event-driven simulation kernel.
It allows to model the system at transactional level. The user constructs a virtual
prototype of the hardware in software using SystemC, allowing early software
development. Only a small subset of SystemC is synthesizable. SystemC ist a
standardised as IEEE Standard 1666.

High-Level Synthesis

High-Level Synthesis relies on powerful, often proprietary, tools to transform high-level
software code into equivalent HDL code. The source languages are usually C and C++,
however there exist a few tools that can process other languages. The advantage of
HLS lies in the very high level of abstraction and the potentially quick design process,

1https://www.sifive.com
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however, the developer has little influence on the generated hardware and has to rely
on the HLS-tool to create the corresponding hardware. The list below shows some of
the available HLS-tools.

• Vivado HLS is a proprietary tool developed by Xilinx. It can process inputs
written in C, C++ or SystemC and outputs VHDL or Verilog code.

• Stratus HLS is a proprietary tool by Cadence that supports the same inputs as
Vivado HLS and outputs RTL code.

• The Intel High Level Synthesis Compiler is part of the proprietary Intel Quartus
Prime design software and allows to process C or C++ into Verilog.

• Catapult is a proprietary tool developed by Siemens that processes C, C++ and
SystemC into VHDL or Verilog.

• Bambu by PoliMi is an academic HLS tool that can process C into Verilog.
Unlike the previous proprietary tools, it does not support fixed-point arithmetic.

• DWARV is an academic HLS compiler developed at the Delft University of
Technology. It can process a subset of C into VHDL.

5.1.2 Simulators

Simulators are used to simulate the behavior of the hardware that was specified using
a HDL. The simulation allows to find potential errors in the design at an early stage.
Simulators can generally be divided into proprietary and open-source tools. Some of
the existing simulators are listed below and Table 5.1 contains a summary of their
respective properties.

Proprietary Simulators

• ModelSim is a well-known and well-supported simulator developed by Mentor
Graphics. It is capable of simulating separated or mixed VHDL and Verilog
entities and supports a wide range of different standards of these languages.
To the day, ModelSim is the leading simulator for FPGA design. Licenses are
expensive, and the existing free version only allows to simulate smaller designs
and runs at only 40% of the full version’s speed.

• VCS is a well-established proprietary simulator by Synopsys that supports
different language standards of VHDL, Verilog and SystemVerilog. It features
multiple advanced simulation techniques such as native low power, x-propagation
and fine-grained parallelism.

• Xcelium is developed by Cadence and supports a wide range of different language
standards of VHDL, Verilog and SystemVerilog. It allows multi-core simulation
for a reduced simulation time as well as several advanced features such as
x-propagation.
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Open-Source Simulators

• Verilator supports Verilog, but not VHDL. It typically has a high performance
that matches that of proprietary simulators, and the possibility of multi-threading
could further improve the performance of Verilator. Verilator has a wide range
of functionalities, but as an open-source tool, it might lack some features of the
proprietary simulators.

• IcarusVerilog is a light-weight open-source simulator that only supports Verilog.

• GHDL is a fast and open-source simulator that supports the simulation of VHDL.

Open Source Performance Verilog
ModelSim x X X
VCS x X X
Xcelium x X X
Verilator X X X
IcarusVerilog X x X
GHDL X x x

Table 5.1: Summary of Hardware Simulation Tools

5.1.3 Synthesis Tools

Some of the existing proprietary and open-source synthesis tools are listed below and
Table 5.2 contains a summary of their respective properties.

Proprietary Synthesis Tools

• The Vivado Design Suite by Xilinx is a set of tools that allows the simulation of
the design via the built-in simulator XSIM, synthesis of both VHDL and Verilog,
and place&route. However, licenses are expensive.

• Design Compiler Ultra is a synthesis tool developed by Synopsys that allows
the synthesis of VHDL, Verilog and SystemC. The tool features a variety of
optimization techniques that help it to improve the synthesis results.

• Genus Synthesis Solution is developed by Cadence and supports VHDL, Verilog
and SystemC. Several optimization features improve the results of the synthesis.

Open-Source Synthesis Tools

• Yosys is an open-source synthesis tool that only supports Verilog. It works very
well together with the place&route tool nextpnr and features ASIC and FPGA
support via the icestorm project.
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• The open-source Verilog to Routing tool flow consists of multiple tools. It takes
as input a Verilog description of the digital circuit and a description of the target
FPGA architecture, and outputs the FPGA bitstream. The synthesis is done
with ODIN II.

Open
Source

Verilog FPGA
targets

ASIC
targets

Formal
Verification

Vivado x X X X x
Design Compiler Ultra x X X X x
Genus Synthesis Solution x X X X x
Yosys X X X X X
Verilog to Routing X X X X X

Table 5.2: Summary of Hardware Synthesis Tools

5.1.4 Place and Route

Some of the existing proprietary and open-source tools for Place and Route are listed
below and an overview of their properties can be found in Table 5.3.

Proprietary Tools

• Innovus Implementation System is a place&route tool developed by Cadence
which features multiple optimization techniques that help improve the timing
and area results of the implementation.

• The Vivado Design Suite includes a tool for placement and routing.

• IC Compiler II is a proprietary place&route tool developed by Synopsys.

Open-Source Tools

• The tool arachnepnr is not maintained anymore, with nextpnr being a complete
functional replacement with several major improvements.

• nextpnr is the successor to arachnepnr and works very well together with the
Yosys synthesis tool.

• In the second part of the Verilog to Routing tool flow, the hardware description
is packed, placed and routed using the Versatile Place and Route (VPR) tool.

In the medium term, it appears that there will be several alternatives for Place and
Route. A promising future candidate is Luna2, which is intended for IC processes
with features sizes > 100nm. The authors announce that Luna will be released under
a liberal open source license. Moreover, by using KLayout, a chip mask layout can be
viewed and edited, further supporting the Place and Route.

2https://www.asicsforthemasses.com/
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Open Source FPGA ASIC actively
maintained

Innovus x X X X
Vivado x X X X
IC Compiler II x X X X
arachnepnr X X X x
nextpnr X X X X
VPR X X X X

Table 5.3: Summary of Place and Route Tools

5.1.5 Formal Hardware Verification

The used formal verification tools have to provide the necessary functionalities, enabling
the user to properly formulate the desired properties for the design specifications and
to incorporate certain solver engines for a bounded model-check or even a complete
proof. Apart from that, there are a few more requirements concerning the whole
design environment. To exploit the full potential of formal methods, they have to be
embedded deeply into the design process. Particularly when using high-level HDLs
like SpinalHDL or Chisel, ways have to be found to integrate formal properties and to
correctly propagate them to the lower abstraction levels of the design flow. Some of
the existing proprietary and open-source hardware verification tools and verification
apps are listed below and Table 5.4 contains a summary of their respective properties.

Proprietary Formal Hardware Verification Tools

• Onespin 360 DV is a formal verification platform enabling the user to verify
a design from multiple angles. There is a library of different verification apps,
including one specifically testing for a gap-free compliance with the RISC-V ISA.

• RISC-V ISA Formal Proof Kit® contains a precompiled library of System Verilog
Assertions to check any RTL design for compliance with the RISC-V ISA. There
is also a verification app called formalISA®, which is built on top of the Proof
Kit.

Open-Source Formal Hardware Verification Tools

• SymbiYosys is a frontend driver extending the Yosys toolchain and allowing for
bounded/unbounded verification of safety/liveness properties, as well as trace
generation from cover statements. It takes Verilog/SystemVerilog code with
constraints as an input and utilizes a wide range of different solver engines to
prove or disprove the statements contained therein. Regarding RISC-V specific
verification, approaches like the open source framework ”RISC-V Formal” can
be used for an end-to-end blackbox verification of the complete design.

• Kami-Framework is a Library for the Coq proof-assistant. It can be used to
specify, implement and verify a design on a high abstraction level and then

Requirements Analysis
Development Tools 49



automatically generate hardware components, following the style of the Bluespec
language. Regarding RISC-V specific verification, multiple formal specifications
of the RISC-V ISA are implemented in Kami and a library of already proven
modules is available.

Open
Source

Compatibility with
standard toolflows

RISC-V specific
implementations

Onespin 360 DV x X X
RISC-V ISA Formal Proof Kit® x X X
Yosys/SymbiYosys X X X
Kami-Framework X x X

Table 5.4: Summary of Hardware Verification Tools

5.2 Choice of Tools

The choice of a Hardware Description Language depends on multiple factors: We need
a language with a high abstraction level that still allows us to have full control over
the generated hardware. This eliminates low-level HDLs such as VHDL and Verilog,
but also the high level synthesis approach, and leaves the Hardware Construction
Languages. The most promising candidates are Chisel and SpinalHDL as they are very
well-made with an active community, and there exist open-source processors written
in these two languages (Rocket and VexRiscv). The VexRiscv has allready proven
itself to be highly configurable and efficient is therefore the implementation of choice.
As a consequence SpinalHDL will be used and in collaboration with the developer
some vital formal verification functionalities have already been added.

Regarding the tools for hardware development, our available choices are very limited,
as we want to rely on open-source tools wherever possible. The Verilator project
seems to be the most suited simulator as it is open-source, fast, and supports Verilog,
which can be generated from SpinalHDL. Our choice of a synthesis tool is Yosys
because it offers the best functionalities among the open-source synthesis tools and
has support for ASIC and FPGA targets. Working well together with Yosys and
being open-source, nextpnr is the ideal place&route tool targeting FPGAs for us.
Open-source place&route tools targeting ASICs are currently being evaluated, on the
basis of those tools included in the OpenROAD project3. The following processing
steps are determined by the semiconductor fab in respect to the booked production
technology, in our case it will be a 120nm process. Nevertheless, it will be necessary to
verify the functionality of the physically produced chip and its implemented tamper
protection mechanisms.
For software development, there exists a plethora of tools that are open source

and that can be used to implement the software components that are required. The
HSM firmware can be implemented in a low-level programming language such as

3https://github.com/The-OpenROAD-Project/OpenROAD
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C or Rust, and the existing open source tools can be used throughout the entire
development process. This will most likely involve using the GNU Compiler Collection4

which already supports the RISC-V ISA and its extension with custom instructions.
Alternatives however exist, the LLVM project5 also has support for the RISC-V ISA
and is the basis for several C and Rust compilers.

4https://github.com/riscv/riscv-gnu-toolchain
5https://github.com/llvm/llvm-project
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6 Definition of Formal Verification Methods

The main goal for formal verification in this project is to raise the quality of the devel-
opment process, by ensuring correctness of crucial aspects of the design and thereby
demonstrate the capability of open source solutions to do so. The Yosys/SymbiYosis-
Toolchain fulfills all the necessary requirements to serve as a basis for the desired
formal verification. The compatibility with SpinalHDL has already been ensured with
the help of its designer, and therefore formal verification can be integrated in all stages
of the design process. The potentially verifiable aspects can be grouped into two
categories:

• Functional aspects of the main CPU and the HSM extension

• Non-functional aspects, which include countermeasures against different side-
channel attacks or hardware-trojans

The formal verification process depends on the actual design and implementation.
While a full formal verification covering all aspects would be beyond the scope of this
project, we will focus on some key aspects of the development and demonstrate the
general feasibility of formal verification for RISC-V systems. Moreover, due to the
open source nature of the project, our verification efforts can serve as a blueprint
and starting point for future verified RISC-V-based systems. Therefore the first
step is to establish a modifiable and extendable method of verifying the main CPU‘s
ISA-compliance on a higher level of abstraction. This way, the correctness of the
core functionality can be guaranteed after changes or additions to the design. The
riscv-formal framework presents a good starting point for this purpose; a bounded
model check for a VexRiscv configuration already exists 1. This framework will be
evaluated and then adapted, also aiming for a more complete proof. In a second
step, additional components of the architecture will be verified. In particular, the
compliance with bus-protocols and other interactions with the HSM, the memory or
other external components are potential candidates for formal verification. We will
not focus on the HSM’s cryptographic features and other non-functional aspects, as
they are notoriously hard to formally define in the first place. Rather than prove weak
and unsatisfying security properties we will concentrate on verifying that the addition
of hardening measures and cryptographic extensions preserves correctness of the CPU
and core components as sketched above.

1https://github.com/SymbioticEDA/riscv-formal/tree/master/cores/VexRiscv
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7 Summary

This report contains an overview of use cases, requirements, development tools and
means of verification for an open hardware security module. The components to be
produced will address two objectives. The first is to make more open tools available
to industry in order to support innovation and value creation. The second is to
increase the security of open tools. International supply chains are susceptible to
interference and attack by malicious actors. Also, hardware may be manipulated later,
e.g. criminals may do a side-channel attack on an HSM used in automotive.
Open source development tools and free and permissive licensing can reduce the

impact of trading disputes and drive competition as well as academic research, espe-
cially in the context of IT-security. For the software sector, open source tools and
operating systems already enjoy wide-spread use by industry, academia and individuals
alike. In the context of hardware development, this process has also started, e.g. with
regard to RISC-V processors, but has only begun in the area of hardware development
tools. Security is of vital importance to the industry, however, currently available
open source tools are mostly concerned with functionality and ease of use, not with
lack of vulnerabilities or formal verification. Most aspects of security and are therefore
unsuited for many industrial applications.

This project aims to push towards this threshold by establishing and demonstrating
an open source design flow for RISC-V security-aware hardware development. The
design of a hardware security module (HSM) is an excellent demonstration for the
security-aware hardware development tools to be established by this project. The
use-cases described in Chapter 3 are common for applications in the automotive
industry and likely share requirements with many other industrial applications. The
ever-increasing connectivity leads to a more wide-spread use of cryptography to pro-
tect confidentiality and authenticity of data. This in turn leads to a requirement for
resistance against the implementation specific attacks discussed in Section 3.3. In light
of the ongoing back-and-forth between novel techniques for attack and defense, it is
beneficial to provide the broader community with the tools required for participating
in this process. For the actual demonstration of the design flow, an HSM will be
implemented, following the TPM 2.0 specification. Together with an exemplary appli-
cation processor, multiple instances of the HSM can be used to demonstrate security
functionalities fulfilling the requirements specified in Chapter 4. The requirements
specific to the HSM include secure boot, secure update, confidential data access, and
secure access control.

The hardware component of the HSM demonstrator will be based on a RISC-V
processor that implements the rv32i base instruction set, complemented by the needed
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standard extensions and some suitable custom extensions. The design of such an HSM
shows the broad variety of challenges for the corresponding tool-flow. In particular,
physical access to securely stored data is a major threat, thus methods for hardening
the hardware against such side-channel attacks (SCA) have to be provided. There are
several hardware-based threads, such as timing or power SCAs that can be addressed
by implementing dedicated protection designs into the functional circuitry. These
implementations need to be implemented automatically by using open-source tools.
In addition, formal methods must be applied to verify the implemented protection
schemes and functionality aspects as well as showing the absence of undocumented
hardware features such as Hardware Trojans. Hence, formal methods should be inte-
grated into every step of the design process. Therefore, each of these steps cannot be
solved independently and the chosen tools used to do so should be highly interoperable.

The choice of a Hardware Description Language depends on multiple factors: We
need a language with a high abstraction level that still allows us to have full control over
the generated hardware. This eliminates low-level HDLs such as VHDL and Verilog,
but also the high level synthesis approach, and leaves the Hardware Construction
Languages. The most promising candidates are Chisel and SpinalHDL as they are very
well-made with an active community, and there exist open-source processors written
in these two languages (Rocket and VexRiscv). The VexRiscv has allready proven
itself to be highly configurable and efficient is therefore the implementation of choice.
As a consequence SpinalHDL will be used and in collaboration with the developer
some vital formal verification functionalities have already been added.

Regarding the tools for hardware development, our available choices are very limited,
as we want to rely on open-source tools wherever possible. The Verilator project
seems to be the most suited simulator as it is open-source, fast, and supports Verilog,
which can be generated from SpinalHDL. Our choice of a synthesis tool is Yosys
because it offers the best functionalities among the open-source synthesis tools and
has support for ASIC and FPGA targets. Working well together with Yosys and
being open-source, nextpnr is the ideal place&route tool targeting FPGAs for us.
Open-source place&route tools targeting ASICs are currently being evaluated, on the
basis of those tools included in the OpenROAD project1. The following processing
steps are determined by the semiconductor fab in respect to the booked production
technology, in our case it will be a 120nm process. Nevertheless, it will be necessary to
verify the functionality of the physically produced chip and its implemented tamper
protection mechanisms.
For software development, there exists a plethora of tools that are open source

and that can be used to implement the software components that are required. The
HSM firmware can be implemented in a low-level programming language such as
C or Rust, and the existing open source tools can be used throughout the entire
development process. This will most likely involve using the GNU Compiler Collection2

which already supports the RISC-V ISA and its extension with custom instructions.

1https://github.com/The-OpenROAD-Project/OpenROAD
2https://github.com/riscv/riscv-gnu-toolchain
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Alternatives however exist, the LLVM project3 also has support for the RISC-V ISA
and is the basis for several C and Rust compilers.

For verification, we plan to rely on existing technology such as bounded model check
to prove the correctness of VexRisv with respect to the RISC-V ISA. In addition,
we plan to verify the compliance with the bus protocol. For the hardening and
cryptographic measures, we plan to verify their equivalence with the unextended core.
All in all, our verification efforts will provide the developed solution with the necessary
quality commensurate with the requirements of the automotive industry.

3https://github.com/llvm/llvm-project
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